SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Panico S.) ;pers:(Castellini G.);srt2:(2015)"

Search: WFRF:(Panico S.) > Castellini G. > (2015)

  • Result 1-10 of 24
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Adriani, O., et al. (author)
  • Pamela's measurements of magnetospheric effects on high-energy solar particles
  • 2015
  • In: Astrophysical Journal Letters. - 2041-8205 .- 2041-8213. ; 801:1
  • Journal article (peer-reviewed)abstract
    • The nature of particle acceleration at the Sun, whether through flare reconnection processes or through shocks driven by coronal mass ejections, is still under scrutiny despite decades of research. The measured properties of solar energetic particles (SEPs) have long been modeled in different particle-acceleration scenarios. The challenge has been to disentangle the effects of transport from those of acceleration. The Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) instrument enables unique observations of SEPs including the composition and angular distribution of the particles about the magnetic field, i.e., pitch angle distribution, over a broad energy range (>80 MeV)-bridging a critical gap between space-based and ground-based measurements. We present high-energy SEP data from PAMELA acquired during the 2012 May 17 SEP event. These data exhibit differential anisotropies and thus transport features over the instrument rigidity range. SEP protons exhibit two distinct pitch angle distributions: a low-energy population that extends to 90 degrees and a population that is beamed at high energies (>1 GeV), consistent with neutron monitor measurements. To explain a low-energy SEP population that exhibits significant scattering or redistribution accompanied by a high-energy population that reaches the Earth relatively unaffected by dispersive transport effects, we postulate that the scattering or redistribution takes place locally. We believe that these are the first comprehensive measurements of the effects of solar energetic particle transport in the Earth's magnetosheath.
  •  
2.
  • Bruno, A., et al. (author)
  • Solar energetic particle events : Trajectory analysis and flux reconstruction with PAMELA
  • 2015
  • In: Proceedings of Science. - : Proceedings of science.
  • Conference paper (peer-reviewed)abstract
    • The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Ground Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earth's magnetosphere. As case study, the results for the May 17, 2012 event are presented.
  •  
3.
  • Martucci, M., et al. (author)
  • Magnetospheric effects on high-energy solar particles during the 2012 May 17th event measured with the PAMELA experiment
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The great challenge in constraining scenarios for solar energetic particle (SEP) acceleration is due to the fact that the signatures of acceleration itself are heavily modified by transport within interplanetary space. During transport, SEPs are subject to pitch angle scattering by the turbulent magnetic field, adiabatic focusing, or reflecting magnetic structures. Ground Level Enhancements (GLEs) provide an ideal way to study acceleration with minimal transport. In this work, we present a unique high-energy SEP observation from PAMELA of the 2012 May 17 GLE and interpret the observed pitch angle distributions as a result of local scattering (1 AU) by the Earth's magnetosheath.
  •  
4.
  • Menn, W., et al. (author)
  • Lithium and beryllium isotopes in the pamela-experiment
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • On the 15th of June 2006, the PAMELA satellite-borne experiment was launched from the Baikonur cosmodrome and it has been collecting data since July 2006. The apparatus comprises a time-of-flight system, a silicon-microstrip magnetic spectrometer, a silicon-tungsten electromagnetic calorimeter, an anti-coincidence system, a shower tail counter scintillator and a neutron detector. The scientific objectives addressed by the mission are the measurement of the antiprotons and positrons spectra in cosmic rays, the hunt for antinuclei as well as the determination of light nuclei fluxes from hydrogen to oxygen in a wide energy range and with very high statistics. In this paper the identification capability for lithium and beryllium isotopes for two different techniques are presented, combining the rigidity measurement from the magnetic spectrometer with the velocity information derived either with the time-of-flight or with multiple dE/dx measurements in the calorimeter. Preliminary results of the isotopic ratios will be presented.
  •  
5.
  • Menn, W., et al. (author)
  • Measurement of the isotopic composition of hydrogen and helium nuclei in cosmic rays with the pamela-experiment
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The cosmic-ray hydrogen and helium (1H,2H,3He,4He) isotopic composition between 100 MeV/n and 1.4 GeV/n has been measured with the satellite-borne experiment PAMELA, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. The rare isotopes 2H and 3He in cosmic rays are believed to originate mainly from the interaction of high energy protons and helium with the galactic interstellar medium. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C. The isotopic composition was measured between 100 and 1100 MeV/n for hydrogen and between 100 and 1400 MeV/n for helium isotopes using two different detector systems over the 23rd solar minimum from July 2006 to December 2007.
  •  
6.
  • Munini, R., et al. (author)
  • Solar modulation of galactic cosmic ray electrons and positrons over the 23rd solar minimum with the PAMELA experiment
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 15th June 2006, when it was launched from the Baikonur cosmodrome to detect the charged component of cosmic rays over a wide energy range and with unprecedented statistics. The apparatus design is particularly suited for particle and antiparticle identification. The PAMELA experiment has measured the time variation of electron and positron spectrum at Earth in great detail, extending the measurement down to 70 MeV and 200 MeV respectively. The spectra have been evaluated with data collected from July 2006 to December 2009, i.e. during the A<0 solar minimum of solar cycle 23, over six-months intervals. These spectra provide important information for the study of CR propagation inside the heliosphere and the investigation of the charge-dependent solar modulation.
  •  
7.
  • Munini, R., et al. (author)
  • Solar modulation of GCR electrons over the 23rd solar minimum with PAMELA
  • 2015
  • In: 24TH EUROPEAN COSMIC RAY SYMPOSIUM (ECRS). - : IOP Publishing.
  • Conference paper (peer-reviewed)abstract
    • The satellite-borne PAMELA experiment has been continuously collecting data since 15th June 2006, when it was launched from the Baikonur cosmodrome to detect the charged component of cosmic rays over a wide energy range and with unprecedented statistics. The apparatus design is particularly suited for particle and antiparticle identification. The PAMELA experiment has measured the electron spectrum at Earth in great detail, extending up to about 100 GeV and down to about 200 MeV. The galactic cosmic ray electron spectra for 2007 and 2009, i.e. measured during the A<0 solar minimum of solar cycle 23, are presented. These fluxes provide important information for the study of charge dependent solar modulation effects.
  •  
8.
  • Vannuccini, E., et al. (author)
  • Measurement of Lithium and Beryllium cosmic-ray abundances by the PAMELA experiment
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The PAMELA experiment is collecting particles along a low Earth semi-polar orbit on board of Resurs-DK1 satellite since June 2006. The combined information of a silicon tracking system and a scintillator hodoscope provides redundant light-element identification capabilities, via multiple ionization energy-loss measurements. The instrument design is not optimized for nuclei detection, whose high ionization signal progressively saturates the detectors. However, Li and Be nuclei can still be identified by using the full set of information, which allows to efficiently select the two elements against the background of more abundant elements. The main issues of the analysis aiming to optimize the Li and Be selection are discussed in this paper. Preliminary results on the elemental abundances will be presented at the conference.
  •  
9.
  • Adriani, O., et al. (author)
  • Reentrant albedo proton fluxes measured by the PAMELA experiment
  • 2015
  • In: Journal of Geophysical Research - Space Physics. - 2169-9380 .- 2169-9402. ; 120:5, s. 3728-3738
  • Journal article (peer-reviewed)abstract
    • We present a precise measurement of downward going albedo proton fluxes for kinetic energy above similar to 70 MeV performed by the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) experiment at an altitude between 350 and 610 km. On the basis of a trajectory tracing simulation, the analyzed protons were classified into quasi-trapped, concentrating in the magnetic equatorial region, and untrapped spreading over all latitudes, including both short-lived (precipitating) and long-lived (pseudotrapped) components. In addition, features of the penumbra region around the geomagnetic cutoff were investigated in detail. PAMELA results significantly improve the characterization of the high-energy albedo proton populations at low-Earth orbits.
  •  
10.
  • Boezio, M., et al. (author)
  • Nine years of cosmic rays investigation by the PAMELA experiment
  • 2015
  • In: Proceedings of Science. - : Proceedings of Science (PoS).
  • Conference paper (peer-reviewed)abstract
    • The PAMELA cosmic ray detector was launched on June 15th of 2006 on board the Russian Resurs-DK1 satellite and during nine years of continuous data-taking it has ob- served very interesting features in cosmic rays, namely in the fluxes of protons, helium and electrons. Its discoveries might change our basic vision of the mechanisms of pro- duction, acceleration and propagation of cosmic rays in the Galaxy. Moreover, PAMELA measurements of cosmic antiproton and positron fluxes and positron-to-all-electron ratio have been setting strong constraints to the nature of Dark Matter. Measurements of boron, carbon, lithium and beryllium (together with the isotopic fraction) will also shed new light on the elemental composition of the cosmic radiation. Search for signatures of more exotic processes (such as the ones involving Strange Quark Matter) is also pursued. Furthermore, the instrument is still functional allowing a constant monitoring of the solar activity during its maximum and a detailed and prolonged study of the solar modulation, improving the comprehension of the heliosphere mechanisms. PAMELA is also measur- ing the radiation environment around the Earth, and it detected for the first time the presence of an antiproton radiation belt surrounding our planet. In this highlight paper PAMELA main results will be reviewed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 24

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view